Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Int Wound J ; 20(3): 831-844, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36054634

RESUMO

Pressure ulcer (PU) prevention in the intensive care unit (ICU) is an important clinical issue as critically unwell patients are at high risk of developing PUs. However, current methods of PU detection are limited, especially for early detection. This study aimed to establish the correlation between Interleukin-1α (IL-1α)/total protein (TP) and sub-epidermal moisture (SEM) measurements in the early identification of PUs in ICU patients. This study employed an observational research design using the STROBE guidelines. Following ethical approval, 53 participants were recruited and sebum was obtained using Sebutape from weight-bearing areas (sacrum, heels and a control site). SEM measurements were taken from the same anatomical sites. Both measures were taken at the same time and participants were followed up for 5 days, or until discharge or death. Correlations between SEM delta measurements, IL-1α, TP and PU incidence and other demographic information were explored using Spearman's correlation for data not normally distributed, and Pearson's R correlation coefficient for normally distributed data. Mean baseline SEM delta measurements indicate abnormal readings for all anatomical sites except the control site, consistent with previous studies. Mean baseline IL-1α/TP readings were higher for the sacrum versus both heels and, on average, readings were higher for the control site versus all other anatomical locations. This is conflicting, given that the control site was non-weight bearing. There were very weak or weak correlations between SEM delta measurements and IL-1α/TP readings. SEM measurements are quick and easy to obtain and results are instant, however Sebutape sampling takes significantly longer and is challenging to conduct among haemodynamically unstable patients. Obtaining SEM measurements is more practical and feasible than Sebutape sampling to assess for the presence of inflammation.


Assuntos
Úlcera por Pressão , Humanos , Úlcera por Pressão/diagnóstico , Úlcera por Pressão/epidemiologia , Interleucina-1alfa , Cuidados Críticos , Biomarcadores , Supuração
2.
Adv Nanobiomed Res ; 2(10)2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36532145

RESUMO

Diabetic foot ulcers (DFU) are chronic wounds sustained by pathological fibroblasts and aberrant extracellular matrix (ECM). Porous collagen-based scaffolds (CS) have shown clinical promise for treating DFUs but may benefit from functional enhancements. Our previous work showed fibroblasts differentiated from induced pluripotent stem cells are an effective source of new ECM mimicking fetal matrix, which notably promotes scar-free healing. Likewise, functionalizing CS with this rejuvenated ECM showed potential for DFU healing. Here, we demonstrate for the first time an approach to DFU healing using biopsied cells from DFU patients, reprogramming those cells, and functionalizing CS with patient-specific ECM as a personalized acellular tissue engineered scaffold. We took a two-pronged approach: 1) direct ECM blending into scaffold fabrication; and 2) seeding scaffolds with reprogrammed fibroblasts for ECM deposition followed by decellularization. The decellularization approach reduced cell number requirements and maintained naturally deposited ECM proteins. Both approaches showed enhanced ECM deposition from DFU fibroblasts. Decellularized scaffolds additionally enhanced glycosaminoglycan deposition and subsequent vascularization. Finally, reprogrammed ECM scaffolds from patient-matched DFU fibroblasts outperformed those from healthy fibroblasts in several metrics, suggesting ECM is in fact able to redirect resident pathological fibroblasts in DFUs towards healing, and a patient-specific ECM signature may be beneficial.

3.
MethodsX ; 9: 101909, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36385920

RESUMO

Applications involving ultrasound treatment as a therapeutic strategy have gained interest due to its enhanced tissue penetration, broad availability, and minimal invasiveness. Recently, ultrasound treatment has been utilized for applications such as controlled drug delivery, enhanced drug penetration, sonodynamic therapy for generating ROS species, and targeted tissue ablation. However, our ability to study and explore applications is limited by the lack of in vitro models that enable efficient and representative screening of ultrasound-based therapeutic strategies. There is a need for cell culture approaches that mimic the mechanical environment of native tissues, which can prevent uncontrolled cell lysis due to ultrasonic energy. We developed two-dimensional and three-dimensional collagen-based materials for culturing cells in vitro that withstand ultrasound treatment. We hypothesized that the collagen matrix mimics the extracellular matrix and absorb most of the energy from ultrasound treatment - similar to in vivo effects - thereby preventing uncontrolled cell lysis. In this study, we developed a strategy for fabricating both the 2D coatings and 3D hydrogels coatings and tested the viability of the cultured cells post different durations of ultrasound treatment.

4.
Adv Healthc Mater ; 11(21): e2201060, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36049222

RESUMO

Bacterial biofilms are a major healthcare concern resulting in refractory conditions such as chronic wounds, implant infections and failure, and multidrug-resistant infections. Aggressive and invasive strategies are employed to cure biofilm infections but are prone to long and expensive treatments, adverse side-effects, and low patient compliance. Recent strategies such as ultrasound-based therapies and antimicrobial nanomaterials have shown some promise in the effective eradication of biofilms. However, maximizing therapeutic effect while minimizing healthy tissue damage is a key challenge that needs to be addressed. Here a combination treatment involving ultrasound and antimicrobial polymeric nanoparticles (PNPs) that synergistically eradicate bacterial biofilms is reported. Ultrasound treatment rapidly disrupts biofilms and increases penetration of antimicrobial PNPs thereby enhancing their antimicrobial activity. This results in superior biofilm toxicity, while allowing for a two- to sixfold reduction in both the concentration of PNPs as well as the duration of ultrasound. Furthermore, that this reduction minimizes cytotoxicity toward fibroblast cells, while resulting in a 100- to 1000-fold reduction in bacterial concentration, is demonstrated.


Assuntos
Anti-Infecciosos , Nanopartículas , Humanos , Biofilmes , Antibacterianos/farmacologia , Bactérias , Polímeros/farmacologia , Anti-Infecciosos/farmacologia , Testes de Sensibilidade Microbiana
5.
J Wound Care ; 31(3): 266-277, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35199593

RESUMO

OBJECTIVE: The primary objective of this systematic review was to determine the effect of vasopressor agents on the development of pressure ulcers (PUs) among critically ill patients in intensive care units (ICUs). The secondary outcome of interest was length of stay in the ICU. METHOD: A systematic review was undertaken using the databases searched: Medline, Embase, CINAHL and The Cochrane Library. Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines were used to formulate the review. Data were extracted using a predesigned data extraction table and analysed as appropriate using RevMan. Quality appraisal was undertaken using the EBL Critical Appraisal Tool. RESULTS: The inclusion criteria were met by 13 studies. Two studies provided sufficient data to compare the number of patients who developed a PU with and without the use of vasopressors. Consistently, within these two studies, being treated with a vasopressor increased the likelihood of PU development. RevMan analysis identified that shorter duration of administration of vasopressors was associated with less PU development (mean difference (MD) 65.97 hours, 95% confidence interval (CI): 43.47-88.47; p=0.0001). Further, a lower dose of vasopressors was also associated with less PU development (MD: 8.76µg/min, 95% CI: 6.06-11.46; p<0.00001). Mean length of stay increased by 11.46 days for those with a PU compared to those without a PU (MD: 11.46 days; 95% CI: 7.10-15.82; p<0.00001). The overall validities of the studies varied between 45-90%, meaning that there is potential for bias within all the included studies. CONCLUSION: Vasopressor agents can contribute to the development of PUs in critically ill patients in ICUs. Prolonged ICU stay was also associated with pressure ulcers in this specific patient group. Given the risk of bias within the included studies, further studies are needed to validate the findings of this review paper.


Assuntos
Estado Terminal , Úlcera por Pressão , Humanos , Unidades de Terapia Intensiva , Úlcera por Pressão/tratamento farmacológico , Vasoconstritores/uso terapêutico
6.
J Biomed Mater Res A ; 110(2): 257-265, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34322978

RESUMO

Poly(globalide) (PGl), an aliphatic polyester derived from unsaturated macrocylic lactone, can be cross-linked during electrospinning and drug-loaded for regenerative medicine applications. However, it lacks intrinsic recognition sites for cell adhesion and proliferation. In order to improve their cell adhesiveness, and therefore their therapeutic potential, we aimed to functionalize electrospun PGl fibers with RGD sequence generating a biomimetic scaffold. First, an amine compound was attached to the surface double bonds of the PGl fibers. Subsequently, the amino groups were coupled with RGD sequences. X-ray photoelectron spectroscopy (XPS) analysis confirmed the functionalization. The obtained fibers were more hydrophilic, as observed by contact angle analysis, and presented smaller Young's modulus, although similar tensile strength compared with non-functionalized cross-linked fibers. In addition, the functionalization process did not significantly alter fibers morphology, as observed by scanning electron microscopy (SEM). Finally, in vitro analysis evidenced the increase in human mesenchymal stromal cells (hMSC) adhesion (9.88 times higher DNA content after 1 day of culture) and proliferation (3.57 times higher DNA content after 8 days of culture) compared with non-functionalized non-cross-linked fibers. This is the first report demonstrating the functionalization of PGl fibers with RGD sequence, improving PGl therapeutic potential and further corroborating the use of this highly versatile material toward regenerative medicine applications.


Assuntos
Nanofibras , Poliésteres , Adesão Celular , Proliferação de Células , Humanos , Nanofibras/química , Oligopeptídeos , Poliésteres/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química
7.
Methods Mol Biol ; 2454: 273-283, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33755908

RESUMO

Tissue engineering solutions have been widely explored for enhanced healing of skin wounds. Diabetic foot ulcers (DFU) are particularly challenging wounds to heal for a variety of reasons, including aberrant ECM, dysregulation of vascularization, and persistent inflammation. Tissue engineering approaches, such as porous collagen-based scaffolds, have shown promise in replacing the current treatments of surgical debridement and topical treatments. Collagen-glycosaminoglycan scaffolds, which are FDA approved for diabetic foot ulcers, can benefit from further functionalization by incorporation of additional signaling factors or extracellular matrix molecules. One option for this is to incorporate matrix from a rejuvenated cell source, as wounds in younger patients heal more quickly. Induced pluripotent stem cells (iPS) are generated from somatic cells and share many functional similarities with embryonic stem cells (ES), while avoiding the ethical concerns. Fibroblasts differentiated from iPS cells have been shown to enrich their ECM with glycosaminoglycan (GAGs), collagen Type III and fibronectin, to have an increased ECM production, and to be pro-angiogenic. Here we describe a technique to grow matrix from post-iPS fibroblasts, and to develop a scaffold from this matrix, in combination with collagen, with the goal of enhancing wound healing. By activating scaffolds with extracellular matrix (ECM) from fibroblasts derived from an iPS source (post-iPSF), the scaffolds are enriched with beneficial elements like GAGs, collagen type III, fibronectin, and VEGF. We believe these scaffolds can enhance skin regeneration and that the techniques can be modified for other tissue engineering applications.


Assuntos
Pé Diabético , Células-Tronco Pluripotentes Induzidas , Colágeno/metabolismo , Colágeno Tipo III/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibronectinas/metabolismo , Glicosaminoglicanos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Engenharia Tecidual/métodos , Alicerces Teciduais
8.
J Mater Chem B ; 9(27): 5456-5464, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34048521

RESUMO

Hydrogels are perfectly suited to support cell and tissue growth in advanced tissue engineering applications as well as classical wound treatment scenarios. Ideal hydrogel materials for these applications should be easy to produce, biocompatible, resorbable and antimicrobial. Here we report the fabrication of degradable covalent antimicrobial lysine and tryptophan containing copolypeptide hydrogels, whereby the hydrogel properties can be independently modulated by the copolypeptide monomer ratio and chiral composition. Well-defined statistical copolypeptides comprising different overall molecular weights as well as ratios of l- and d-lysine and tryptophan at ratios of 35 : 15, 70 : 30 and 80 : 20 were obtained by N-carboxyanhydride (NCA) polymerisation and subsequently crosslinked by the selective reaction of bifunctional triazolinedione (TAD) with tryptophan. Real-time rheology was used to monitor the crosslinking reaction recording the fastest increase and overall modulus for copolypeptides with the higher tryptophan ratio. Water uptake of cylindrical hydrogel samples was dependent on crosslinking ratio but found independent of chiral composition, while enzymatic degradation proceeded significantly faster for samples containing more l-amino acids. Antimicrobial activity on a range of hydrogels containing different polypeptide chain lengths, lysine/tryptophan composition and l/d enantiomers was tested against reference laboratory strains of Gram-negative Escherichia coli (E. coli; ATCC25922) and Gram-positive, Staphylococcus aureus (S. aureus; ATCC25923). log reductions of 2.8-3.4 were recorded for the most potent hydrogels. In vitro leachable cytotoxicity tests confirmed non-cytotoxicity as per ISO guidelines.


Assuntos
Antibacterianos/farmacologia , Materiais Biocompatíveis/farmacologia , Reagentes de Ligações Cruzadas/farmacologia , Hidrogéis/farmacologia , Peptídeos/farmacologia , Triazóis/farmacologia , Antibacterianos/química , Antibacterianos/metabolismo , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/metabolismo , Escherichia coli/efeitos dos fármacos , Humanos , Hidrogéis/química , Hidrogéis/metabolismo , Testes de Sensibilidade Microbiana , Peptídeos/química , Peptídeos/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Triazóis/química , Triazóis/metabolismo
9.
J Biomed Mater Res A ; 109(10): 1803-1811, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33755305

RESUMO

Extracellular matrix is a key component of all tissues, including skin and it plays a crucial role in the complex events of wound healing. These events are impaired in chronic wounds, with chronic inflammation and infection often present in these non-healing wounds. Many tissue engineering approaches for wound healing provide a scaffold to mimic the native matrix. Fibroblasts derived from iPS cells (iPSF) represent a novel source of matrix rich in pro-regenerative components, which can be used for scaffold fabrication to improve wound healing. However, in vitro production of matrix by cells for scaffold fabrication requires long cell culturing times which increases cost. The aim of this work is to optimize the iPSF matrix production by boosting matrix deposition, without affecting its composition. A good candidate technique to achieve this goal is macromolecular crowding, which is known to promote conversion of procollagen into mature collagen and its accumulation. We tested two molecular crowders, Ficoll and Carrageenan-in combination with ascorbic acid-over a prolonged period of time. Ficoll in combination with ascorbic acid notably increased collagen deposition and matrix dry weight compared to ascorbic acid alone, and did not affect matrix composition as measured by RT-PCR. Interestingly, Carrageenan did not affect collagen quantity, but it significantly increased glycosaminoglycan deposition. Finally, we successfully fabricated scaffolds from harvested matrix and confirmed their ability for cell growth and viability. This work lays the foundation for development of a time and cost effective protocol for novel iPSF ECM production for tissue engineering scaffolds.


Assuntos
Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Alicerces Teciduais/química , Cicatrização , Animais , Bovinos , Colágeno/metabolismo , Glicosaminoglicanos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Substâncias Macromoleculares/metabolismo
10.
J Biomed Mater Res B Appl Biomater ; 109(10): 1622-1633, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33600064

RESUMO

While bones have the innate capability to physiologically regenerate, in certain cases regeneration is suboptimal, too slow, or does not occur. Biomaterials-based growth factor delivery systems have shown potential for the treatment of challenging bone defects, however, achieving controlled growth factor release remains a challenge. The objective of this study was to develop a thermally responsive hydrogel for bone regeneration capable of ultrasound-triggered on-demand delivery of therapeutic agents. Furthermore, it was hypothesized that incorporation of hydroxyapatite (HA) into the hydrogel could increase sonosensitization, augmenting ultrasound sensitivity to enable controlled therapeutic release to the target tissue. Alginate thermally responsive P(Alg-g-NIPAAm) hydrogels were fabricated and varying quantities of HA (1, 3, 5, and 7% wt./vol.) incorporated. All hydrogels were highly injectable (maximum injection force below 6.5 N) and rheological characterization demonstrated their ability to gel at body temperature. The study demonstrated the ultrasound-triggered release of sodium fluorescein (NaF), bovine serum albumin (BSA), and bone morphogenetic protein 2 (BMP-2) from the hydrogels. Release rates of BSA and BMP-2 were significantly enhanced in the HA containing hydrogels, confirming for the first time the role of HA as a son sensitizer. Together these results demonstrate the potential of these ultrasound-triggered thermally responsive hydrogels for on-demand delivery of therapeutic agents for bone regeneration.


Assuntos
Materiais Biocompatíveis/química , Portadores de Fármacos/química , Durapatita/química , Hidrogéis/química , Alginatos/química , Sulfato de Amônio/química , Proteína Morfogenética Óssea 2/química , Regeneração Óssea , Liberação Controlada de Fármacos , Etilenodiaminas/química , Fluoresceína/química , Humanos , Osteogênese , Reologia , Soroalbumina Bovina/química , Temperatura , Ondas Ultrassônicas
11.
J Tissue Viability ; 30(2): 168-177, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33402275

RESUMO

BACKGROUND: The incidence and prevalence of pressure ulcers in critically ill patients in intensive care units (ICUs) remain high, despite the wealth of knowledge on appropriate prevention strategies currently available. METHODS: The primary objective of this systematic review was to examine the economic impact of pressure ulcers (PU) among adult intensive care patients. A systematic review was undertaken, and the following databases were searched; Medline, Embase, CINAHL, and The Cochrane Library. Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines was used to formulate the review. Quality appraisal was undertaken using the Consensus on Health Economic Criteria (CHEC)-list. Data were extracted using a pre-designed extraction tool, and a narrative analysis was undertaken. RESULTS: Seven studies met the inclusion criteria. Five reported costs associated with the prevention of pressure ulcers and three explored costs of treatment strategies. Four main PU prevention cost items were identified: support surfaces, dressing materials, staff costs, and costs associated with mobilisation. Seven main PU treatment cost items were reported: dressing materials, support surfaces, drugs, surgery, lab tests, imaging, additional stays and nursing care. The overall validities of the studies varied between 37 and 79%, meaning that there is potential for bias within all the included studies. CONCLUSION: There was a significant difference in the cost of PU prevention and treatment strategies between studies. This is problematic as it becomes difficult to accurately evaluate costs from the existing literature, thereby inhibiting the usefulness of the data to inform practice. Given the methodological heterogeneity among studies, future studies in this area are needed and these should use specific methodological guidelines to generate high-quality health economic studies.


Assuntos
Fatores Econômicos , Úlcera por Pressão/economia , Análise Custo-Benefício , Humanos , Incidência , Unidades de Terapia Intensiva/organização & administração , Úlcera por Pressão/epidemiologia
12.
J Mech Behav Biomed Mater ; 114: 104174, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33191173

RESUMO

Tissue engineering products, like collagen-glycosaminoglycan scaffolds, have been successfully applied to chondrogenic defects. Inducible Pluripotent Stem cell (iPS) technology allows reprograming of somatic cells into an embryonic-like state, allowing for redifferentiation. We postulated that a fibroblast cell line (BJ cells - 'pre-iPSF') cycled through iPS reprogramming and redifferentiated into fibroblasts (post-iPSF) could lubricate collagen-glycosaminoglycan scaffolds; fibroblasts are known to produce lubricating molecules (e.g., lubricin) in the synovium. Herein, we quantified the coefficient of friction (CoF) of collagen-glycosaminoglycan scaffolds seeded with post-iPSF; tested whether cell-free scaffolds made of post-iPSF derived extracellular matrix had reduced friction vs. pre-iPSF; and assessed lubricin quantity as a possible protein responsible for lubrication. Post-iPSF seeded CG had 6- to 10-fold lower CoF versus pre-iPSF. Scaffolds consisting of a collagen and pre-/post-iPSF extracellular matrix blend outperformed these cell-seeded scaffolds (~5-fold lower CoF), yielding excellent CoF values close to synovial fluid. Staining revealed an increased presence of lubricin within post-iPSF scaffolds (confirmed by western blotting) and on the surface of iPSF-seeded collagen-glycosaminoglycan scaffolds. Interestingly, when primary cells from patient biopsy-derived fibroblasts were used, iPS reprogramming did not further reduce the already low CoF of these cells and no lubricin expression was found. We conclude that iPS reprogramming activates lubricating properties in iPS-derived cells in a source cell-specific manner. Additionally, lubricin appears to play a lubricating role, yet other proteins also contribute to lubrication. This work constitutes an important step for understanding post-iPSF lubrication of scaffolds and its potential for cartilage tissue engineering.


Assuntos
Condrogênese , Colágeno , Células-Tronco Pluripotentes , Alicerces Teciduais , Cartilagem , Fibroblastos , Humanos
13.
Biomater Sci ; 9(12): 4278-4288, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33165491

RESUMO

Natural bioactive cue profiles are generally transient with cues switching on/off to coordinate successful outcomes. Dysregulation of these sequences typically leads to disease. Successful wound healing, for example, should progress sequentially through hemostasis, inflammation, granulation tissue formation, and maturation. Chronic wounds, such as diabetic foot ulcers, suffer from uncoordinated signaling, and arrest and cycle between the inflammation and granulation stages. Traditionally, therapeutic delivery in tissue engineering has focused on sustaining delivery of key signaling factors; however, temporal and sequential delivery have increasingly come into focus. To fully take advantage of these signaling systems, a scaffold or matrix material that can house the delivery system is desirable. In this work, we functionalized a collagen-based scaffold - which has proven regenerative potential in wounds - with on-demand delivery of nanoparticles. Building on our previous work with ultrasound-responsive alginate that shows near-zero baseline release and a rapid release in response to an ultrasound trigger, we developed two novel scaffolds. In the first version, homogeneously-distributed microparticles of alginate were incorporated within the collagen-glycosaminoglycan (GAG) scaffold; ultrasound-triggered release of platelet derived growth factor (PDGF) loaded gold nanoparticles was demonstrated; and their maintained bioactivity confirmed. In the second version, pockets of alginate that can be individually loaded and triggered with ultrasound, were incorporated. The ability to sequentially release multiple therapeutics within these scaffolds using ultrasound was successfully confirmed. These platforms offer a precise and versatile way to deliver therapeutic nanoparticles within a proven regenerative template, and can be used to deliver and probe timed therapeutic delivery in wound healing and other tissue engineering applications.


Assuntos
Nanopartículas Metálicas , Alicerces Teciduais , Alginatos , Ouro , Cicatrização
14.
Carbohydr Polym ; 252: 117201, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33183637

RESUMO

Commercial cell-based skin regenerative products are highly expensive, carry the risk of rejection and require a long cell culture period to manufacture. This work describes the synthesis of bilayer films from poly(globalide) (PGl) and regenerated cellulose nanofibers (rCNFs) and their use as a cell-free scaffold to support keratinocyte attachment and proliferation. The method is simple, eco-friendly (as the cellulose precursor is obtained from agricultural waste) and of low cost. The rCNFs were produced by acid hydrolysis and PGl was obtained via enzymatic ring-opening polymerization. The bilayer films were synthesized by layer-by-layer casting at ambient temperature. All the films showed a well-defined interface between PGl and cellulose. The produced rCNF/PGl bilayer films showed cell metabolic activity far superior in comparison with pristine PGl regarding the keratinocyte growth, which illustrates the potential use of these materials in skin tissue engineering.


Assuntos
Proliferação de Células , Celulose , Nanofibras/química , Engenharia Tecidual , Alicerces Teciduais , Celulose/química , Células HaCaT , Humanos , Teste de Materiais
15.
Biomater Sci ; 9(5): 1888, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33226390

RESUMO

Correction for 'Development of wound healing scaffolds with precisely-triggered sequential release of therapeutic nanoparticles' by Tauseef Ahmad et al., Biomater. Sci., 2020, DOI: 10.1039/d0bm01277g.

16.
Biochem Pharmacol ; 182: 114254, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33010213

RESUMO

The circadian clock is a collection of endogenous oscillators with a periodicity of ~ 24 h. Recently, our understanding of circadian rhythms and their regulation at genomic and physiologic scales has grown significantly. Knowledge of the circadian influence on biological processes has provided new possibilities for novel pharmacological strategies. Directly targeting the biological clock or its downstream targets, and/or using timing as a variable in drug therapy are now important pharmacological considerations. The circadian machinery mediates many aspects of the inflammatory response and, reciprocally, an inflammatory environment can disrupt circadian rhythms. Therefore, intense interest exists in leveraging circadian biology as a means to treat chronic inflammatory diseases such as sepsis, asthma, rheumatoid arthritis, osteoarthritis, and cardiovascular disease, which all display some type of circadian signature. The purpose of this review is to evaluate the crosstalk between circadian rhythms, inflammatory diseases, and their pharmacological treatment. Evidence suggests that carefully rationalized application of chronotherapy strategies - alone or in combination with small molecule modulators of circadian clock components - can improve efficacy and reduce toxicity, thus warranting further investigation and use.


Assuntos
Anti-Inflamatórios/uso terapêutico , Cronoterapia/métodos , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Mediadores da Inflamação/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Asma/tratamento farmacológico , Asma/imunologia , Asma/metabolismo , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/imunologia , Doenças Cardiovasculares/metabolismo , Doença Crônica , Cronoterapia/tendências , Relógios Circadianos/efeitos dos fármacos , Ritmo Circadiano/efeitos dos fármacos , Humanos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/metabolismo , Mediadores da Inflamação/antagonistas & inibidores , Sepse/tratamento farmacológico , Sepse/imunologia , Sepse/metabolismo , Resultado do Tratamento
17.
Adv Healthc Mater ; 9(16): e2000307, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32597577

RESUMO

Diabetic foot ulcers (DFUs) are chronic wounds, with 20% of cases resulting in amputation, despite intervention. A recently approved tissue engineering product-a cell-free collagen-glycosaminoglycan (GAG) scaffold-demonstrates 50% success, motivating its functionalization with extracellular matrix (ECM). Induced pluripotent stem cell (iPSC) technology reprograms somatic cells into an embryonic-like state. Recent findings describe how iPSCs-derived fibroblasts ("post-iPSF") are proangiogenic, produce more ECM than their somatic precursors ("pre-iPSF"), and their ECM has characteristics of foetal ECM (a wound regeneration advantage, as fetuses heal scar-free). ECM production is 45% higher from post-iPSF and has favorable components (e.g., Collagen I and III, and fibronectin). Herein, a freeze-dried scaffold using ECM grown by post-iPSF cells (Post-iPSF Coll) is developed and tested vs precursors ECM-activated scaffolds (Pre-iPSF Coll). When seeded with healthy or DFU fibroblasts, both ECM-derived scaffolds have more diverse ECM and more robust immune responses to cues. Post-iPSF-Coll had higher GAG, higher cell content, higher Vascular Endothelial Growth Factor (VEGF) in DFUs, and higher Interleukin-1-receptor antagonist (IL-1ra) vs. pre-iPSF Coll. This work constitutes the first step in exploiting ECM from iPSF for tissue engineering scaffolds.


Assuntos
Diabetes Mellitus , Células-Tronco Pluripotentes Induzidas , Matriz Extracelular , Fibroblastos , Humanos , Engenharia Tecidual , Alicerces Teciduais , Fator A de Crescimento do Endotélio Vascular , Cicatrização
18.
Adv Biosyst ; 4(3): e1900212, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32293152

RESUMO

A number of natural polymer biomaterial-based nerve guidance conduits (NGCs) are developed to facilitate repair of peripheral nerve injuries. Cross-linking ensures mechanical integrity and desired degradation properties of the NGCs; however, common methods such as formaldehyde are associated with cellular toxicity. Hence, there is an unmet clinical need for alternative nontoxic cross-linking agents. In this study, collagen-based NGCs with a collagen/chondroitin sulfate luminal filler are used to study the effect of cross-linking on mechanical and structural properties, degradation, biocompatibility, and immunological response. A simplified manufacturing method of genipin cross-linking is developed, by incorporating genipin into solution prior to freeze-drying the NGCs. This leads to successful cross-linking as demonstrated by higher cross-linking degree and similar tensile strength of genipin cross-linked conduits compared to formaldehyde cross-linked conduits. Genipin cross-linking also preserves NGC macro and microstructure as observed through scanning electron microscopy and spectral analysis. Most importantly, in vitro cell studies show that genipin, unlike the formaldehyde cross-linked conduits, supports the viability of Schwann cells. Moreover, genipin cross-linked conduits direct macrophages away from a pro-inflammatory and toward a pro-repair state. Overall, genipin is demonstrated to be an effective, safe, biocompatible, and anti-inflammatory alternative to formaldehyde for cross-linking clinical grade NGCs.


Assuntos
Anti-Inflamatórios , Orientação de Axônios/efeitos dos fármacos , Reagentes de Ligações Cruzadas , Iridoides , Alicerces Teciduais/química , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Linhagem Celular , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/farmacologia , Fibroblastos/citologia , Humanos , Iridoides/química , Iridoides/farmacologia , Ratos , Células de Schwann/citologia , Engenharia Tecidual
19.
Adv Healthc Mater ; 8(9): e1801604, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30838810

RESUMO

Extracellular vesicles (EVs) are emerging as a promising alternative approach to cell-therapies. However, to realize the potential of these nanoparticles as new regenerative tools, healthcare materials that address the current limitations of systemic administration need to be developed. Here, two technologies for controlling the structure of alginate based microgel suspensions are used to develop sustained local release of EVs, in vitro. Microparticles formed using a shearing technique are compared to those manufactured using vibrational technology, resulting in either anisotropic sheet-like or spheroid particles, respectively. EVs harvested from preosteoblasts are isolated using differential ultracentrifugation and successfully loaded into the two systems, while maintaining their structures. Promisingly, in addition to exhibiting even EV distribution and high stability, controlled release of vesicles from both structures is exhibited, in vitro, over the 12 days studied. Interestingly, a significantly greater number of EVs are released from the suspensions formed by shearing (69.9 ± 10.5%), compared to the spheroids (35.1 ± 7.6%). Ultimately, alterations to the hydrogel physical structures have shown to tailor nanoparticle release while simultaneously providing ideal material characteristics for clinical injection. Thus, the sustained release mechanisms achieved through manipulating the formation of such biomaterials provide a key to unlocking the therapeutic potential held within EVs.


Assuntos
Vesículas Extracelulares/química , Hidrogéis/química , Nanopartículas/química , Polímeros/química , Animais , Western Blotting , Linhagem Celular , Camundongos , Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura
20.
Biomaterials ; 197: 405-416, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30708184

RESUMO

The bone infection osteomyelitis (typically by Staphylococcus aureus) usually requires a multistep procedure of surgical debridement, long-term systemic high-dose antibiotics, and - for larger defects - bone grafting. This, combined with the alarming rise in antibiotic resistance, necessitates development of alternative approaches. Herein, we describe a one-step treatment for osteomyelitis that combines local, controlled release of non-antibiotic antibacterials with a regenerative collagen-based scaffold. To maximise efficacy, we utilised bioactive glass, an established osteoconductive material with immense capacity for bone repair, as a delivery platform for copper ions (proven antibacterial, angiogenic, and osteogenic properties). Multifunctional collagen-copper-doped bioactive glass scaffolds (CuBG-CS) were fabricated with favourable microarchitectural and mechanical properties (up to 1.9-fold increase in compressive modulus over CS) within the ideal range for bone tissue engineering. Scaffolds demonstrated antibacterial activity against Staphylococcus aureus (up to 66% inhibition) whilst also enhancing osteogenesis (up to 3.6-fold increase in calcium deposition) and angiogenesis in vitro. Most significantly, when assessed in a chick embryo in vivo model, CuBG-CS not only demonstrated biocompatibility, but also a significant angiogenic and osteogenic response, consistent with in vitro studies. Collectively, these results indicate that the CuBG-CS developed here show potential as a one-step osteomyelitis treatment: reducing infection, whilst enhancing bone healing.


Assuntos
Indutores da Angiogênese/administração & dosagem , Antibacterianos/administração & dosagem , Colágeno/química , Cobre/administração & dosagem , Osteogênese/efeitos dos fármacos , Alicerces Teciduais/química , Indutores da Angiogênese/farmacologia , Animais , Antibacterianos/farmacologia , Materiais Biocompatíveis/química , Linhagem Celular , Embrião de Galinha , Cobre/farmacologia , Sistemas de Liberação de Medicamentos , Vidro/química , Camundongos , Neovascularização Fisiológica/efeitos dos fármacos , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...